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Remark
Remember that κ is an infinite cardinal and I ⊆ P(κ) is an ideal on κ.

Definition
A set X ⊆ ωκ is strongly I-dominating, iff

(∀f : <ωκ→ I)(∃x ∈ X)(∀∞n)x(n) /∈ f(x�n).

Definition
A tree p ⊆ <ωκ is an I-Laver tree, iff there is s ∈ p so that for all t ∈ p

1 either t ⊆ s or t ⊇ s,
2 if t ⊇ s, then brp(t) = {α ∈ κ : t_〈α〉 ∈ p} ∈ I+.
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Definition
Let us denote by LI the set of all I-Laver trees.

DI = {X ⊆ ωκ : X is not strongly I-dominating},

l0I = {X ⊆ ωκ : (∀p ∈ LI)(∃q ∈ LI)(q ⊆ p and [q] ∩X = ∅)}.

Facts

DI and l0I are σ-ideals on ωκ,

DI ⊆ l0I ,

DI ∩Σ1
1 = l0I ∩Σ1

1.
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Definition
A set X ⊆ ωκ is strongly I-unbounded, iff

(∀f : <ωκ→ I)(∃x ∈ X)(∃∞n)x(n) /∈ f(x�n).

Definition
A tree p ⊆ <ωκ is an I-Miller tree, iff there is s ∈ p such that brp(s) ∈ I+

and for every t ∈ p

1 either t ⊆ s or t ⊇ s,
2 there is u ∈ p with u ⊇ t such that brp(u) ∈ I+,
3 if brp(t) ∈ I, then | brp(t)| = 1.
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Definition
Let us denote by MI the set of all I-Miller trees.

UI = {X ⊆ ωκ : X is not strongly I-unbounded},

m0
I = {X ⊆ ωκ : (∀p ∈MI)(∃q ∈MI)(q ⊆ p and [q] ∩X = ∅)}.

Facts

UI and m0
I are σ-ideals on ωκ,

UI ⊆ m0
I ,

UI ∩Σ1
1 = m0

I ∩Σ1
1,

UI ⊆ DI .
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Definition
If p, q ⊆ <ωκ are I-Miller trees, then

p ≤ q iff

p ⊆ q and (∀t ∈ p)(brq(t) ∈ I+ → brp(t) ∈ I+).

Observation
If p ∈MI , q ∈ LI and p ≤ q, then p ⊆ q and p is an I-Laver tree with the
same stem as q has.
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Definition
ml0I = {X ⊆ ωκ : (∀p ∈MI)(∃q ∈MI)(q ≤ p and [q] ∩X = ∅)}.

m0
I l0I

ml0I DI

UI

Lemma

l0I = {A ⊆ ωκ : (∀p ∈ LI)(∃q ∈ LI)(q ≤ p and [q] ∩A = ∅)}.
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Observation
For every tree p ∈MI with [p] ∈ DI we have [p] ∈ l0I \m0

I ,

thus

l0I 6= m0
I and ml0I ( l0I .

Lemma
(CH) If κ < c, then m0

I 6⊆ l0I and consequently ml0I ⊆ m0
I ∩ l0I ( m0

I .

Let {pα : α < ω1} = {p ∈MI : [p] ∈ DI} and {qα : α < ω1} = LI .

For α < ω1 pick xα ∈ [qα] \
⋃
β<α[pβ] and let A = {xα : α < ω1}.

It follows that A /∈ l0I and A ∈ m0
I .

Question

Is m0
I 6= ml0I?

Is ml0I = m0
I ∩ l0I?
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Lemma

If the ideal I is a prime ideal, then DI = l0I .

Question
If the ideal I is a prime ideal, is UI = m0

I?

Lemma

If 2κ = c, the ideal I is not prime and non(ml0I) = c, then there is a set
A ⊆ ωκ such that A ∈ ml0I and A /∈ DI . Hence UI ( ml0I and DI ( l0I .
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Definition
An ideal I is locally prime, iff the set

{a ∈ I+ : I�a is a prime ideal}

is dense in I+.

Theorem

1 If 2κ = c and the ideal I is not locally prime, then UI ( ml0I
and DI ( l0I .

2 (MA) If κ < c and the ideal I is not locally prime, then UI ( ml0I
and DI ( l0I .

3 (CH) If κ < c, then DI ( l0I holds, if and only if the ideal I
is not prime.
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Thank you for your attention!
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